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Abstract. We consider the multi-stage facility location problem with capacity
constraints. In the problem, we seek to locate at most one capacity constrained
facility in each stage to serve a subset of agents, who arrive over different stages
and are located on a line. Our goal is to design randomized strategyproof mech-
anisms to elicit agents’ true information and locate facilities that minimize the
social cost and maximum cost, which are defined to be the sum and the max-
imum of the agents’ costs, respectively. Because of the stages, an agent’s cost
depends on the agent’s distance to their assigned facility and the agent’s waiting
cost. For different facility capacity settings with waiting cost, we provide ran-
domized strategyproof mechanisms for the considered cost objectives. We also
establish lower bounds for the approximation ratios given by any randomized
strategyproof mechanisms.

Keywords: Facility location · Mechanism design · Algorithmic game theory.

1 Introduction

In recent years, facility location problems have received significant attention in mecha-
nism design and social choice communities because of their ability to model real-world
preference aggregation settings (e.g., voting [3, 4, 14] and site locations [6, 15]). In the
standard mechanism design study of facility location, a social planner aims to locate
facilities to serve strategic agents while eliciting agent preferences and optimizing the
social or maximum cost [6].

Most existing mechanism design studies on facility location problem have focused
on facilities without any capacity constraints or immobile over time. However, in real-
world settings, facilities (e.g., mobile health clinics, mobile blood donation centers, mo-
bile outreach programs) are both capacity constrained [1, 2, 18] and mobile (i.e., need
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to be relocated over several periods or stages [8, 17, 19]). In this paper, we consider the
multi-stage facility location problem with capacity constraints (MSFLPs-CC) by merg-
ing the facility location problem with capacity constraints and the multi-stage facility
location problem (with mobile facilities). The considered facility location problem can
be used to model a wide range of multistage settings, including locating shuttle stops,
providing mobile health services, scheduling education sessions, and other multi-stage
extensions of scenarios (see e.g., [1, 2, 7, 9, 16, 18]).

Notice that both multi-stage models with [8] or without moving cost [17, 19] have
been studied in the facility location literature. We focus on the latter settings because
the (mobile) facility’s moving cost are negligible/independent across each period and
the social planner focuses on minimizing the agents’ costs rather than their own costs.

For instance, consider an organization that is providing shuttle services from a cen-
tral station/point (e.g., hotels/workplaces) at the beginning of each stage, where each
shuttle will travel to its designated location and take their agents (e.g., clients or em-
ployees), who have location preferences and arrive over different time intervals, to a
relatively distant destination. Because a shuttle often has a limited seating capacity to
serve new agents arriving over different time intervals, the company needs to deter-
mine the pick-up points of the shuttle for each time period and how to assign agents
to the shuttle at different time intervals to better serve the agents, accounting for agent
travel distances to the shuttle locations and, possibly, agent waiting times over different
time intervals. Moreover, the moving cost of the facilities between stages is negligible
compared to the pre-determined round-trip or operation costs (which are independent
and incomparable to the agents’ costs). As such, moving cost is not considered and
incorporated into the planner’s objectives.

In addition, the considered multi-stage problems play an important role in assist-
ing the mobile health services [7, 16]. At the beginning of each day, the medical facil-
ity (e.g., vaccine vehicles, mobile blood donation centers) travels from a central sta-
tion/point (e.g., medical clinic) to serve residents of several areas. Due to the storage
capacity and vaccination time restrictions, the medical facility can only serve a lim-
ited number of residents each day. Therefore, the government needs to decide where to
locate the facility and which residents to serve over different periods.

1.1 Our Contributions

We study the multi-stage facility location problem with k capacity constrained facilities
on the real line I = [0, 1], where k is the maximum number of available facilities, and
the real line is the most widely studied setting [6] that abstractly represents the facility
serving range (e.g., the location range of the mobile vaccine vehicle on a street, and the
difficulty scale of the standardized materials).

In this paper, we characterize our mechanism design results (see Tables 1) for mini-
mizing the two cost objectives by the number of agents (i.e., n), the number of facilities
(i.e., k), facility capacities (i.e., c1, . . . , ck), the last stage with arriving agents (i.e., T ),
and the penalty coefficient (i.e., d).

We consider two different facility capacity settings with waiting cost, i.e., d > 0
(see Table 1). For the equal capacity setting (e.g., when the facility capacity cannot
change over time, such as shuttle buses) where c1 = · · · = ck = c and k · c = n,
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Table 1. Summary of our results. Notice that it reduces to the classic single facility location
problems when k = 1.

Objective Upper Bound Lower Bound
Equal Capacity Setting:
Social Cost n

2d
+ 1,T (n− c) + 1 2

4d+3
+ 1

Max Cost 1
d
+ 1, max(T + k − 2, 2) 1

4d+2
+ 1

Arbitrary Capacity Setting:
Social Cost n

2d
+ 1, Tn− T + 1 2

4d+3
+ 1

Max Cost 1
d
+ 1, max(T + k − 2, 2) 1

4d+2
+ 1

we first present a randomized strategyproof mechanism, which has a good performance
when d is relatively large. It achieves approximation ratios of n

2d + 1 for social cost
and 1

d +1 for maximum cost. We also provide another strategyproof mechanism which
performs well when d is small, and notice that this mechanism can also work when
there is spare capacity, i.e., kc > n. It achieves an approximation ratio of T (n− c) + 1
for social cost and max(T + k − 2, 2) for maximum cost. We complement the result
by giving lower bounds of 2

4d+3 +1 for social cost and 1
4d+2 +1 for maximum cost by

any strategyproof mechanism.
For the arbitrary capacity setting (e.g., when the facility capacity can change over

time such as a classroom in the education setting), we first provide a strategyproof
mechanism with dynamic programming to optimize the waiting cost of agents, which
performs well when the waiting cost is large. It achieves an approximation ratio of n

2d+1
for social cost and 1

d + 1 for maximum cost. Then we provide another strategyproof
mechanism with dynamic programming to optimize the distance cost of agents, which
has a good performance when d is small. It has approximation ratios of Tn−T +1 for
social cost and max{T + k − 2, 2} for maximum cost.

The remainder of the paper is organized as follows. We first formally define the
problem in Section 2. Then, we study different capacity settings with waiting cost in
Section 3. Finally, we conclude our work and discuss the open questions in Section 4.

1.2 Related Work

We focus on studies on mechanism design for facility location problem that are most
related to ours. We note that there are optimization studies that consider facility location
problem where facilities have capacity constraints (see, e.g., [5, 16]) or are mobile (see,
e.g., [9, 16]).

In mechanism design for facility location problem, Moulin [14] first characterized
strategyproof mechanisms for the classical single stage facility location problem on a
line, where agents have single-peaked preferences. The work of Procaccia and Tennen-
holtz [15] initiated the study of approximate mechanism design without money and used
the facility location problem as a case study. They obtained several approximately op-
timal (deterministic and randomized) strategyproof mechanisms for the single facility
location problem under the social and maximum cost objectives. They also considered
two homogeneous facilities or multiple locations per agent. Later numerous studies im-
proved the bounds and complemented the results with k facilities [10–13].
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Since then, different variants of the classical facility location problem have been
proposed. Aziz et al. [2] first introduced the capacity constrained facility location prob-
lem from a mechanism design perspective, where the number of agents is larger than
the total capacity of facilities. Later, Aziz et al. [1] provided negative results on several
classical mechanisms for the uncapacitated settings in terms of the strategyproofness
and the approximation ratio. They also provided a deterministic strategyproof mech-
anism, the INNERPOINT mechanism for two facilities with equal capacity constraint,
and a deterministic strategyproof mechanism for two facilities with arbitrary capacity
constraints. They also proved that the corresponding optimization problem with arbi-
trary capacity constraints is NP-hard. Besides the algorithmic and the mechanism per-
spective, Walsh [18] showed a strong characterization theorem that the INNERPOINT
mechanism is the unique strategyproof mechanism that is both anonymous and Pareto
optimal for two facilities location problem with equal capacity constraints.

There are also studies on the multi-stage facility location problem without any ca-
pacity constraints where agents arrive dynamically over different stages. The work of
De Keijzer and Wojtczak [8] investigated the multi-stage facility reallocation problem
on the real line, where the goal is to minimize the sum of distance costs between the
facility and agents at all stages, plus the facility’s moving cost. The work of Wada et
al. [17] studied the dynamic facility location problem from the mechanism design per-
spective, where agents can decide their participations in each stage. Wang et al. [19]
studied the multi-stage facility location problem with transient agents who arrive in
arbitrary stage and stay for a number of consecutive stages. They analyze the prob-
lems from both algorithmic and mechanism design perspectives. To the best of our
knowledge, we are the first to simultaneously consider the multi-stage settings, facility
capacity constraints, and waiting time of each agent in facility location problem. For
more details, please refer to a recent survey on mechanism design for facility location
problem [6].

2 Preliminaries

In this section, we formally define the multi-stage facility location problem with capac-
ity constraints (MSFLPs-CC) and the considered mechanism design problems.

Multi-Stage Facility location problem with Capacity Constraints. We are given a
collection of agents N := {1, . . . , n}, where agents arrive in different stages and T ≥ 1
is the last stage with arriving agents. Each agent j ∈ N has location xj ∈ I = [0, 1].
We denote the location profile of all agents as X = (x1, . . . , xn). We assume agents
are ordered such that x1 ≤ x2 ≤ · · · ≤ xn.

In our setting, we have k ≥ 1 (mobile) facilities to serve these agents. At each
stage, at most one facility can be placed due to resource constraints (such a setting with
a single facility at each stage is also motivated and considered by [8, 9, 16, 19]).

In order to serve all agents, it is also possible to place the facility at stages beyond
T . Therefore, we consider at most T + k − 1 stages when locating the facilities. When
k = 1, the only way to serve all of the agents is to wait until everyone has arrived and
serve them all at stage T , which is equivalent to the standard facility location problem



Randomized Strategyproof Mechanisms for MSFLPs-CC 5

with a single facility. Because k = 1 has been well-studied (see e.g., [6, 15]) for social
and maximum costs, we focus on the cases of k ≥ 2.

Each facility is indexed by i ∈ [k] = {1, . . . , k} with a capacity constraint ci
restricting the number of agents it can serve, and its location is denoted as fi ∈ I =
[0, 1]. The k facilities’ capacities are denoted by C = (c1, . . . , ck).

The facility that serves agent j ∈ N is indicated by aj ∈ [k]. We denote Ni :=
{j|aj = i} as the group of agents that facility i serves in the same stage. For simplicity,
denote Li := minj∈Ni xj and Ri := maxj∈Ni xj as the locations of the leftmost agent
and the rightmost agent in group i, respectively. The arrival stage of agent j is denoted
as rj ≤ T . We denote the arrival stage profile of the agents as R = (r1, . . . , rn). The
serving stage of facility i ∈ [k] (i.e., the stage in which the agents in Ni are served)
is denoted as si ≤ T + k − 1. Clearly, for Ni to be valid and feasible, |Ni| ≤ ci and
rj ≤ si for any j ∈ Ni.

Mechanism Design Problems. We are interested in designing randomized strategyproof
mechanisms that minimize the social or maximum cost.

A randomized mechanism is a function F that maps the profile (X,R,C) to Y :=
(fP1 , . . . , fPk

), O := (NP1 , . . . , NPk
), and S := (sP1 , . . . , sPk

), where each fPi is a
set of probability distributions over I, NPi

is a set of probability distributions over N ,
and SPi

is a set of probability distributions over {1, . . . , T + k − 1} such that for each
pair of values (Ni, si) from the distribution (NPi

, sPi
), we have rj ≤ si for any j ∈ Ni

and |Ni| ≤ ci. Given the penalty coefficient d, the cost of an agent is defined to be
cost(F (X,R,C), xj , rj) = Efi∼fPi

,Ni∼NPi
,si∼sPi

[|yaj − xj |+ d · (saj − rj)], which
is the expected sum of the distance cost and the waiting cost. We focus on the setting
where at least one agent has to wait for at least one stage to get served. Otherwise, it can
be solved and reduced to the static setting where each facility can serve all the arriving
agents in a stage, and thus, agents will only have distance cost.

Denote (X−j , x
′
j) as the tuple X with x′

j in place of xj , and (R−j , r
′
j) as the tuple

R with r′j in place of rj . Below, we provide a formal definition of strategyproofness.

Definition 1. A mechanism F is strategyproof if for all X , R, x′
j ∈ I and r′j ≥ rj , we

have

cost(F (X,R,C), xj , rj)

≤cost(F ((X−j , x
′
j), (R−j , r

′
j), C), xj , rj).

Given a mechanism F and a profile (X,R,C), the social cost function is defined as
SC[F (X,R,C)] =

∑
j∈N cost(F (X,R,C), xj , rj) and the maximum cost function

is defined as MC[F (X,R,C)]=maxj∈N cost(F ( X,R,C), xj , rj). A mechanism F
achieves an approximation ratio of ρ for the social cost (resp. maximum cost), if for any
profile (X,R,C), SC[F (X,R,C)]≤ ρ·SC[OPT (X,R,C)] (resp. MC[F (X,R,C)]
≤ ρ ·MC[OPT (X,R,C)]) where OPT (X,R,C) is the optimal solution that mini-
mizes the social or maximum cost.

3 MSFLPs-CC With Waiting Cost

In this section, we study the randomized strategyproof mechanisms for multi-stage fa-
cility location problem with capacity constraints.
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3.1 Equal Capacity Setting with Waiting Cost

In this subsection, we assume all facilities have equal capacity such that c1 = c2 =
· · · = ck = c = n

k . We first design a randomized strategyproof mechanism that has a
better performance if the penalty coefficient (i.e., d) is large. Mechanism 1 places all
the facilities at the median of all agents. It will gradually allocate facilities from 1 to k
as long as at least c agents have arrived but have not been served in each stage. Suppose
the allocations of facilities from 1 to i−1 have been determined. Denote the agents that
have arrived before or in stage t but have not been served by facilities at f1, f2, . . . , fi−1

as Mt,i = {j|rj ≤ t, j ∈ N −
∑i−1

k=1 Nk}.

Mechanism 1 Let f1 = · · · = fk = x⌈n
2 ⌉. Starting from stage 1 and facility i = 1, we

consider one of the following two cases. A function q() is used to help randomly pick c
agents with equal probability.
Case 1. If |Mt,i| ≥ c, let Ni = q(Mt,i) and si = t. We then continue with stage t + 1
and facility (i+ 1).
Case 2. Otherwise, no agents are served in stage t. We continue with stage t + 1 and
facility i.

Lemma 1. Mechanism 1 is strategyproof. It has approximation ratios of n
2d +1 for the

social cost and 1
d + 1 for the maximum cost.

Proof. It is clear that no agent can decrease their distance cost by misreporting their
location when all the facilities are placed at the median of all the agents. Besides, arrived
agents are all selected with equal probability, and no agent can be served earlier by
misreporting their location or a later arrival stage. We use OPTd and OPTw to indicate
the target distance cost and the waiting cost of the agents in the optimal solution. Since
the facility serves agents as soon as at least c agents have arrived in the current stage,
the total waiting cost will not exceed the optimal solution’s total waiting cost. And the
sum of distance cost is at most n

2 . Therefore, the approximation ratio for social cost is

Mechanism

OPT
≤

n
2 +OPTw

OPTd +OPTw
≤ n

2d
+ 1.

The maximum of distance cost is at most 1. Therefore, the approximation ratio for
maximum cost is

Mechanism

OPT
≤ 1 +OPTw

OPTd +OPTw
≤ 1

d
+ 1.

⊓⊔

We also provide an example to show that these bounds are tight.

Example 1. Consider there are two facilities with an equal capacity of c, c agents at 0,
and c agents at 1. All the agents at 0 arrive at stage 1, one agent at 1 arrives at stage 2,

1 One implementation of q() is to permute agents by a random order π, and output the agents
π(1), . . . , π(c).
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Algorithm 1 FindMinLen(X ,c)
Input: Agent location profile X and the equal capacity c.
Parameter: Define length(i,m) be the minimum length covering the first i agents with m in-
tervals.
Initialize length(i, 1) = {

xi − x1 if i ≤ c,

∞ otherwise.

Output:length(n, k).
1: for i ∈ {2, . . . , n}, j ∈ {i− c, . . . , i− 1}, m ∈ {2, . . . , k} do
2: length(i,m) = minj∈{i−c,...,i−1}{max{length(j,m− 1), xi − xj+1}}
3: end for
4: return length(n, k)

and c− 1 agents at 1 arrive at stage 3. Mechanism 1 places two facilities at the median
point of all these agents. Therefore, both facilities are placed at 0. Agents at 0 will all
be served in stage 1, and agents at 1 will all be served in stage 3. Assuming the waiting
cost of each stage is d, the social cost of Mechanism 1 is n

2 + d and the maximum cost
is 1+ d. In the optimal solution, one facility is placed at 0, serving all the agents at 0 in
stage 1, and the other facility is placed at 1 to serve all the agents at 1 in stage 3, which
has a social cost and maximum cost of d. Hence, the approximation ratio is n

2d + 1 for
social cost and 1

d + 1 for maximum cost, which shows our analysis is tight.

We also consider the case when the penalty coefficient (i.e., d) is relatively small,
and design a randomized strategyproof mechanism where no agents are served until
they all arrived. Mechanism 2 is a nontrivial extension of the Equal-Cost randomized
mechanism for the classical setting without any capacity constraints for k ≥ 2 facil-
ities [11]. Mechanism 2 aims to find at most k disjoint intervals such that each in-
terval contains at most c agents (where c is the capacity of the facility), and has a
minimum covering length Len. Notice that in order to minimize the maximum length
of these intervals, it must be one of the distances between any two agents a and b,
i.e., Len = |xa − xb|. However, different from the Equal-Cost randomized mecha-
nism where each interval has an identical length, some of these lengths might contain
more than c agents in which case we can determine and eliminate through the following
algorithm FindMinLen(X, c). Notice that Mechanism 2 achieves the same perfo-
mance and guarantees strategyproofness even if there is spare capacity, i.e., kc > n.
FindMinLen(X, c) runs in O(nkc) to determine a minimum covering length for each
interval and covers at most c agents. Finally, it will wait until all the agents have arrived,
and use a random map function g : {1, . . . , k} → {0, . . . , k−1} to generate, with equal
probability, a permutation order in which facilities serve their agents.

Mechanism 2 The mechanism performs the following steps.

1. Use FindMinLen(X, c) to find a profile of allocations O = {N1, . . . , Nk} such
that Ni contains all the agents in the i−th interval from left to right and Len =
maxi∈[k]{Ri − Li} is minimized where Li and Ri are the locations of the leftmost
agent and the rightmost agent served by facility i given Ni, respectively.
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2. If Li + Len ≤ 1, fi is placed at Li with probability 1/2 and Li + Len with
probability 1/2. Otherwise, fi is placed at Ri with probability 1/2 and Ri − Len
with probability 1/2.

3. For each facility in the allocations, we pick an arbitrary stage in {T, . . . , T+k−1}
for the facility to serve the assigned agents, such that S = {T+g(1), . . . , T+g(k)}.

Lemma 2. Mechanism 2 is strategyproof. It has approximation ratios of T (n− c) + 1
for social cost and max{2, T + k − 2} for maximum cost.

Proof. We first show that FindMinLen(X, c) returns minimum Len. Suppose there
exists a division of intervals with Len′ < Len such that all the agents are covered while
each interval contains at most c agents. However, Len′ can still satisfy the requirements
of FindMinLen(X, c). Thus FindMinLen(X, c) will not return Len, which contra-
dicts our assumption.

Because all agents have the expected distance cost of Len
2 . Any agent may only ben-

efit by reducing the minimum cover length Len. If an agent misreports their location so
that the minimum cover length becomes Len′, Len′ < L, the expected distance cost for
him will increase to Len+(Len−Len′)

2 . Therefore, agents will not benefit by misreport-
ing. The optimal social distance cost is at least Len since Len is the minimum distance
that can cover all the agents in each stage. The total distance cost of Mechanism 2 is
at most n

2 · Len. We use OPTd and OPTw to indicate the target distance cost and the
waiting cost of the agents in the optimal solution. The worst case in terms of the total
waiting cost is when n−c agents arrive in stage 1 and c agents arrive in stage T . The sum
of waiting cost of Mechanism 2 is at most OPTw+T (n−c)d ≤ (T (n−c)+1)·OPTw.
The approximation ratio for social cost is

Mechanism

OPT
≤

(T (n− c) + 1) ·OPTw + n
2 ·OPTd

OPTw +OPTd

≤ T (n− c) + 1.

The optimal maximum distance cost is at least Len
2 , and the expected maximum

cost of Mechanism 2 is Len. The maximum of waiting cost is at most (T + k − 2)d ≤
(T + k − 2)ȮPTw. Therefore, the approximation ratio for maximum cost is

Mechanism

OPT
≤ (T + k − 2)ȮPTw + 2OPTd

OPTd +OPTw
≤ max(2, T + k − 2).

⊓⊔

Lemma 3. For k ≥ 2, any randomized strategyproof mechanism has an approximation
ratio of at least 2

4d+3 + 1 for social cost.

Proof. We construct the first configuration such that kc
2 + 1 agents locate at 0 and

kc
2 − 1 agents locate at 1, k ≥ 2, c ≥ 3.There are k (k is an even number) facilities with

an equal capacity of c. We first focus on the approximation ratio of the distance cost.
Now one agent at 0 is moved to c−2

4(c−1) . Let p(x) be the probability density function
of the probability that the facility serving the agent at c−2

4(c−1) is placed at x in the new
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configuration. Denote x̄1, x̄2 and x̄3 as the expected facility locations in the intervals

[0, c−2
4(c−1) ), [

c−2
4(c−1) , c−2

2(c−1) ] and ( c−2
2(c−1) , 1] respectively. Let P1 =

∫ c−2
4(c−1)

0 p(x)dx,

P1 · ( c−2
4(c−1) − x̄1) =

∫ c−2
4(c−1)

0 p(x)xdx, P2 =
∫ c−2

2(c−1)
c−2

4(c−1)

p(x)dx, P2 · ( c−2
4(c−1) + x̄2) =∫ c−2

2(c−1)
c−2

4(c−1)

p(x)xdx, P3 =
∫ 1

c−2
2(c−1)

p(x)dx, P3 ·( c−2
4(c−1)+ x̄3) =

∫ 1
c−2

2(c−1)
p(x)xdx. Suppose

the approximation ratio of a randomized strategyproof mechanism for distance cost is
α. In the first configuration, the distance cost of an agent at 0 is at most (1−P )· c−2

4(c−1)+

P · (1 − c−2
4(c−1) ), and the social cost is P · (kc2 + 1) ≤ α, where P is the probability

that agents at 0 are served by a facility placed at 1 and the optimal social cost in the first
configuration is 1. By strategyproofness, the agent at c−2

4(c−1) in the new configuration
cannot benefit by misreporting to 0. Therefore, we have

P1 · x̄1 + P2 · x̄2 + P3 · x̄3 ≤
α

kc
2 + 1

· (1− c− 2

4(c− 1)
) + (1− α

kc
2 + 1

) · c− 2

4(c− 1)

=
α

kc
2 + 1

+ (1− 2α
kc
2 + 1

) · c− 2

4(c− 1)
.

The optimal social cost of the new configuration is 3c−2
4(c−1) . If the facility serving the

agent at c−2
4(c−1) is placed somewhere in [0, c−2

2(c−1) ], the optimal allocation is to serve
c − 1 agents at 0 with the agent at c−2

4(c−1) together. If the facility serving the agent at
c−2

4(c−1) is placed in ( c−2
2(c−1) , 1], the optimal allocation is to serve c−1 agents at 1 and the

agent at c−2
4(c−1) together. Therefore, for the social cost of any randomized mechanism,

we have

α · 3c− 2

4(c− 1)
≥P1 · ((c− 1)(

c− 2

4(c− 1)
− x̄1) + x̄1 + 1)

+P2 · ((c− 1)(
c− 2

4(c− 1)
+ x̄2) + x̄2 + 1)

+P3 · ((c− 1)(1− c− 2

4(c− 1)
− x̄3) + x̄3)

≥(P1 + P2 + P3)
c+ 2

4
+ P3 ·

c− 2

2
+ P2cx̄2 − (P1x̄1 + P3x̄3)(c− 2)

≥c+ 2

4
+ P2cx̄2 + (c− 2)(P2x̄2 −

α
kc
2 + 1

− (1− 2α
kc
2 + 1

) · c− 2

4(c− 1)
)

≥ 5c− 6

4(c− 1)
− c(c− 2)α

(kc+ 2)(c− 1)
.

Thus, we have α ≥ 5kc2−(6k−10)c−12
(3k+4)c2−(2k+2)c−4 . Suppose there exists a randomized strate-

gyproof mechanism with an approximation ratio of β (1 ≤ β < 5
3 ) for distance cost. Let

k = c2 and c > 6+4β
5−3β ≥ 5. We have 5kc2−(6k−10)c−12

(3k+4)c2−(2k+2)c−4 > 5c4−6c3

3c4+4c3 > β, which con-
tradicts the previous statement. Therefore, the sum of distance costs is at least 5

3 ·OPTd.
The sum of waiting cost is at least OPTw = d. Let k = c2 and c be as large as possible.
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According to this instance, the approximation ratio is at least

Mechanism

OPT
≥

5
3 ·OPTd +OPTw

OPTd +OPTw
→ 2

4d+ 3
+ 1. (1)

⊓⊔

Lemma 4. For k ≥ 2, any randomized strategyproof mechanism has an approximation
ratio of at least 1

4d+2 + 1 for maximum cost.

Proof. We extend the proof of the lower bound of randomized strategyproof mecha-
nisms in single facility location problem in [15] to this setting. Consider a configuration
where we place 2(k − 1) agents at 0, one agent at 1 − 2ϵ, and one agent at 1 − ϵ. The
capacity of each facility is 2 and all the agents arrive at the same stage. We assume ϵ
is small enough such that the agent at 1 − ϵ and the agent at 1 are served by the same
facility due to the approximation ratio. It is clear that at least one agent has the expected
distance cost of at least ϵ

2 . Without loss of generality, we suppose the agent j at 1 − ϵ
has the expected distance cost of E(cost(j)) ≥ ϵ

2 . Now we move the agent at 1 − ϵ
to 1, due to the strategyproofness, the expected distance between the facility and point
1 − ϵ in the new configuration should be at least ϵ

2 . Therefore, in the new setting, the
expected maximum distance cost is at least ϵ

2 + ϵ while the optimal maximum distance
cost is ϵ, which proves a minimum approximation ratio of 3

2 for distance cost. The sum
of waiting cost is at least OPTw = d. Let k = 2 and move one agent at 1− 2ϵ to point
0. According to this instance, the approximation ratio is at least

Mechanism

OPT
≥

3
2 ·OPTd +OPTw

OPTd +OPTw
→ 1

4d+ 2
+ 1.

⊓⊔

3.2 Arbitrary Capacity with Waiting Cost

In this subsection, we consider k facilities with arbitrary capacities such that n =∑k
i=1 ci, and provide two randomized strategyproof mechanisms for both social cost

and maximum cost. Observe that the equal capacity setting is a special case of this
setting. Therefore, we can inherit all the lower bounds in Subsection 3.1.

Similar to Mechanism 1, serving agents earlier can achieve a better performance
when d is large. Thus, we present Mechanism 3 which will serve agents with an opti-
mal allocation that minimizes the waiting cost. It can be proved by a similar method that
finding an optimal allocation (for the total or the maximum waiting cost) in the arbitrary
capacity setting is also NP-hard [1]. We introduce a dynamic programming algorithm
MinWaiting(R,C) to determine the allocation that minimizes the total (resp. maxi-
mum) waiting cost. The sub-routine is similar to FindMinCover(X,C) by keeping
track of an allocation that minimizes the target cost up to the i-th arriving agents (see
the pseudo-code in our supplementary materials).

Let Cap← MinWaiting(R,C), and f1 = · · · = fk = x⌈n
2 ⌉. Starting from stage

1 and facility i = 1, we consider one of the following two cases. A function q(Cap[i])
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Algorithm 2 MinWaiting(R,C)
Input: Agent arrival stage profile R in an increasing order and facilities’ capacities C
Parameter: Initialize an array Waiting[n][2k] to n · T and an array of empty tuples Cap[n][2k],
where Waitng[i][w] stores the minimum target waiting cost for agents {1, 2, . . . i} using a set
of facilities F , and Cap[i][w] stores the allocation used for agents {1, 2, . . . i} with F , where
w =

∑
fj∈F 2j−1. Denote cost(N) as the target waiting cost function, i.e., sum or maximum.

Output: An allocation Cap that achieves the minimum target waiting cost.
Mechanism 3 1: for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, w ∈ {1, . . . , 2k} do
2: if i = cj and w = 2j−1 then
3: Waiting[i][w]← cost(1, . . . , i)
4: Cap[i][w]← (cj)
5: else if cj /∈ Cap[i− cj ][w − 2j−1] then
6: Temp←cost(Waiting[i− cj][w − 2j−1], i− cj + 1, . . . , i)
7: if Waiting[i][w]>Temp then
8: Waiting[i][w]← Temp
9: Cap[i][w]← Cap[i− cj ][w − 2j−1].append(cj)

10: end if
11: end if
12: end for
13: return Cap[n][2k − 1]

is used to help randomly pick Cap[i] agents with equal probability.
Case 1. If |Mt,i| ≥ Cap[i], Ni = q(Mt,i) and si = t. We then continue with stage t+1
and facility (i+ 1).
Case 2. Otherwise, no agents are served in stage t. We continue with stage t + 1 and
facility i.

Lemma 5. Mechanism 3 is strategyproof. It has approximation ratios of n
2d +1 for the

social cost, and 1
d + 1 for the maximum cost.

Proof. Notice that for any feasible solution, the amount of waiting cost decrease due
to the misreporting is the same. The total waiting cost of Mechanism 3 will not exceed
the optimal solution’s total waiting cost. The sum of distance cost is at most n

2 , and the
maximum distance cost is at most 1. By a similar proof of Lemma 1, it is clear that the
approximation ratios for the social cost and the maximum cost are n

2d + 1 and 1
d + 1

respectively. ⊓⊔

Notice that finding an (asymptotically) optimal allocation is necessary to achieve
bounded approximation ratios when d is small.

Example 2. Consider two facilities with capacities 1 and 2, and three agents at {0, x, 1}.
If we do not always use the optimal one, there are three other possible allocations. The
approximation ratio using any one of the three can be arbitrarily large i.e., x/(1− x).

Thus, we then introduce a dynamic programming algorithm, FindMinCover(X,C),
used by Mechanism 4, to determine the allocations and the facilities’ locations. In
FindMinCover(X,C), we use an array Len[n][2k] to store the minimum covering
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Algorithm 3 FindMinCover(X ,C)
Input: Agent location profile X and facilities’ capacities C
Parameter: Initialize an array Len[n][2k] to 1 and an array of empty tuples Cap[n][2k], where
Len[i][w] stores the minimum covering length for agents {1, 2, . . . i} using a set of facilities F ,
and Cap[i][w] stores the allocation used for agents {1, 2, . . . i}with F , where w =

∑
fj∈F 2j−1

.
Output: Minimum length Len covering agents in different groups and its corresponding alloca-
tions Cap.
1: for i ∈ {1, . . . , n}, j ∈ {1, . . . , k}, w ∈ {1, . . . , 2k} do
2: if i = cj and w = 2j−1 then
3: Len[i][w]← xi − x1

4: Cap[i][w]← (cj)
5: else if cj /∈ Cap[i− cj ][w − 2j−1] then
6: Temp←max{Len[i− cj][w − 2j−1], xi − xi−cj+1}
7: if Len[i][w]>Temp then
8: Len[i][w]← Temp
9: Cap[i][w]← Cap[i− cj ][w − 2j−1].append(cj)

10: end if
11: end if
12: end for
13: return Len[n][2k − 1], Cap[n][2k − 1]

length and an array of tuples Cap[n][2k] to store the capacities of the allocated facili-
ties based on their locations from left to right. Within the algorithm, we represent each
facility i as a binary vector with value 2i and w is a value (sum of powers of two) to
record which facilities have been used and fully occupied so that we will not allocate
them again. Mechanism 4, will wait until all the agents have arrived, and use a random
map function g : {1, . . . , k} → {0, . . . , k − 1} to generate, with equal probability, a
permutation order in which facilities serve their agents.

Mechanism 4 Let (Len,Cap)←FindMinCover(X,C). Ni = {1+
∑i−1

w=1 Cap[w],

. . . , Cap[i]+
∑i−1

w=1 Cap[w]}. If Li+Len ≤ 1, the facility i is placed at Li with proba-
bility 1

2 and Li+Len with probability 1
2 . Otherwise, fi is placed at Ri with probability

1
2 and Ri − Len with probability 1

2 . For each facility in the allocations, we pick an
arbitrary stage in {T, . . . , T + k− 1} for the facility to serve the assigned agents, such
that S = {T + g(1), . . . , T + g(k)}.

Lemma 6. Mechanism 4 is strategyproof, which achieves approximation ratios of Tn−
T + 1 for social cost and max{2, T + k − 2} for maximum cost.

Proof. The sum of distance cost of Mechanism 4 is at most n
2 ·OPTd. The total waiting

cost is at most OPTw + T (n − 1) · d ≤ (Tn − T + 1) · OPTw. The approximation
ratio for social cost is

Mechanism

OPT
≤

(Tn− T + 1) ·OPTw + n
2 ·OPTd

OPTw +OPTd

≤ Tn− T + 1.
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The maximum cost of Mechanism 4 is at most (T + k− 2)d+2OPTd. Therefore,
the approximation ratio for maximum cost is

Mechanism

OPT
≤ (T + k − 2)ȮPTw + 2OPTd

OPTd +OPTw
≤ max(2, T + k − 2).

⊓⊔

4 Conclusion

We initiate the study of the multi-stage facility location problem with capacity con-
straints from a mechanism design perspective. For settings with various capacity con-
straint configurations with waiting times, we provide randomized strategyproof mech-
anisms with approximation guarantees as well as lower bounds to the corresponding
settings. There are several directions for future work. It will be intriguing to extend
results beyond one dimension to other complex structures like trees and networks. An-
other approach to extend this work is to consider opening multiple facilities at each
stage. Finally, one can also consider a setting where agents have preferences over het-
erogeneous facilities.
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